Abstract
Dislocation based modeling of plasticity is one of the central challenges at the crossover of materials science and continuum mechanics. Developing a continuum theory of dislocations requires the solution of two long standing problems: (i) to represent dislocation kinematics in terms of a reasonable number of variables and (ii) to derive averaged descriptions of the dislocation dynamics (i.e. material laws) in terms of these variables. The kinematic problem (i) was recently solved through the introduction of continuum dislocation dynamics (CDD), which provides kinematically consistent evolution equations of dislocation alignment tensors, presuming a given average dislocation velocity (Hochrainer, T., 2015, Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Philos. Mag. 95 (12), 1321–1367). In the current paper we demonstrate how a free energy formulation may be used to solve the dynamic closure problem (ii) in CDD. We do so exemplarily for the lowest order CDD variant for curved dislocations in a single slip situation. In this case, a thermodynamically consistent average dislocation velocity is found to comprise five mesoscopic shear stress contributions. For a postulated free energy expression we identify among these stress contributions a back-stress term and a line-tension term, both of which have already been postulated for CDD. A new stress contribution occurs which is missing in earlier CDD models including the statistical continuum theory of straight parallel edge dislocations (Groma, I., Csikor, F.F., Zaiser, M., 2003. Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281). Furthermore, two entirely new stress contributions arise from the curvature of dislocations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.