Abstract

Objective. Abcb4 (−/−) mice secrete phosphatidylcholine-free, cytotoxic bile and develop chronic cholangitis. The aim of this study was to identify differentially transcribed genes whose products contribute to the liver tissue pathology during this disease. Material and methods. Hepatic gene transcription was measured in 3-, 6-, 9- and 20-week-old Abcb4 (−/−) mice (FVB.129P2-abcb4tm1Bor/J) using cDNA microarrays, with FVB/NJ Abcb4 (+/+) mice serving as controls. Focus was on inflammatory-, remodelling- and fibrosis genes. Marked differential transcription of inflammatory-, tissue remodelling- and fibrosis genes found by cDNA microarrays was verified by real-time polymerase chain reaction (PCR). Liver pathology was quantified by histopathology scoring. Results. Transcription of clade A3 Serpin genes showed early, marked down-regulation. The chemokine genes Ccl2, Ccl20 and Cxcl10 were markedly up-regulated. Tissue remodelling- and fibrosis genes exhibiting markedly up-regulated transcription included: Ctgf, Elf3, Lgals3, Mmp12, Mmp15, Spp1, Loxl2, Pdgfa, Pdgfrb, Sparc, Tgfb1, Tgfb2, Tgfbi, Tgfbr2 and Col1a1, Col1a2, Col2a1, Col3a1, Col4a1 genes. Microarray-based recordings of differential gene transcription of the majority of these genes harmonized with the liver histopathology score. Thus, cDNA microarray-based analysis showed increasing differential transcription of several inflammatory-, tissue remodelling- and fibrosis genes during the first 9 weeks of disease and a tendency towards differential transcription to stabilize at an elevated level from 9 to 20 weeks of disease. Conclusions. Multiple genes regulating inflammation, tissue remodelling and fibrosis not previously linked to Abcb4 (−/−) cholangitis are identified as being differentially transcribed in Abcb4 (−/−) livers, where they contribute to the pathogenesis of liver tissue pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.