Abstract

Many of the chromatographic methods used in industry to determine related impurities in bio pharmaceuticals employ salt containing mobile phases. “Salty” mobile phases often provide superior chromatographic performance but are not compatible with mass spectrometry (MS) detection. Peak tracking necessary for method development is therefore often based on peak areas and the chemist’s experience/intuition. In addition, MS characterization of impurities usually is done by offline fraction collection, which apart from being time consuming often suffers from poor recovery or the degradation of impurities collected. The recent development of multiple heart-cutting (MHC) two-dimensional liquid chromatography (2D-LC) provides a way to address these problems. This study shows how MHC 2D-LC–MS can be used to obtain almost real time MS data for bovine insulin related impurities present at low level (<<0.03%). High quality MS spectra were obtained even for a first dimension using a mobile phase containing high concentrations of sodium, sulphate and phosphate. Thereby MHC 2D-LC–MS offers a possibility to eliminate the guesswork currently associated with peak tracking during method development. Furthermore, in contrast to current characterization methods involving fraction collection, solvent reduction/exchange etc., MS determination is done directly, which markedly shortens the workflow (from days to hours) and reduces the risk for poor recovery and degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.