Abstract
Loop-based multiple heart-cutting (MHC) two-dimensional liquid chromatography (2D-LC) is presented as a solution to quantify target components in complex matrices, such as additives in polymers, at very high chromatographic resolution. The determination of hexabromocyclododecane (HBCD) in polystyrene (PS) is described. One dimensional ((1)D) LC analysis with UV detection did not allow quantitation of the main isomers of HBCD due to peak overlap with polymer components. MHC 2D-LC analysis provided the separation power, accuracy, and repeatability needed for quantitative analysis of the additives of interest. Heart-cuts from peaks of the (1)D-chromatogram or entire regions of interest are sampled into loops, where they remain parked until their sequential reinjection onto the second dimension ((2)D) column. A column set consisting of phenyl ((1)D) and C18 ((2)D) stationary phases gave baseline separation in (2)D between HBCD and PS background. Linearity for spiked polymer samples was achieved over a range of 0.02-1.00 wt % HBCD relative to the amount of polymer. The limit of quantitation was estimated at 0.01 wt % HBCD in PS. A peak area RSD of 0.7% obtained for ten replicates of a real sample demonstrated excellent repeatability of the analysis. MHC 2D-LC is an elegant solution for quantitative analyses of difficult-to-separate samples when conventional (1)D separation fails.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.