Abstract
Abstract Deciphering the mechanisms that drive variation in biomass production across plant communities of contrasting species composition and diversity is a main challenge of biodiversity–ecosystem functioning research. Niche complementarity and selection effect have been widely investigated to address biodiversity–productivity relationships. However, the overlooking of the specific role played by key species has limited so far our capacity to comprehensively assess the relative importance of other potential drivers of biodiversity effects. Here, we conducted a grassland diversity–productivity experiment to test how four potential facets of biodiversity effects, namely species richness, functional diversity, species identity and the relaxation of intraspecific competition, account for variations in above and root biomass production. We grew six plant species in monoculture, as well as in every combination of two, three and six species. Plant density was kept constant across the richness gradient but we additionally grew each species in half‐density monoculture to estimate the strength of intraspecific competition for each studied species. We characterized eight functional traits, including root traits, related to nutrient and light acquisition and computed both the functional dissimilarity and the community‐weighted mean (CWM) of each trait. We further partitioned above‐ground biodiversity effect into complementarity and selection effects. We observed strong positive biodiversity effects on both above‐ground and root biomass as well as strong positive complementarity effect. These arose largely from the presence of a particular species (Plantago lanceolata) and from CWM trait values more than from a higher functional dissimilarity in plant mixtures. P. lanceolata displayed the highest intraspecific competition, which was strongly relaxed in species mixtures. By contrast, the presence of Sanguisorba minor negatively affected the productivity of plant mixtures, this species suffering more from interspecific than intraspecific competition. This study provides strong evidences that the search for key species is critical to understand the role of species diversity on ecosystem functioning and demonstrates the major role that the balance between intraspecific and interspecific competition plays in biodiversity–ecosystem functioning relationships. Developing more integrative approaches in community and ecosystem ecology can offer opportunities to better understand the role that species diversity plays on ecosystem functioning. A free Plain Language Summary can be found within the Supporting Information of this article.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have