Abstract
Abstract. Despite the high abundance of secondary aerosols in the atmosphere, their formation mechanisms remain poorly understood. In this study, the Master Chemical Mechanism (MCM) and the Chemical Aqueous-Phase Radical Mechanism (CAPRAM) are used to investigate the multiphase formation and processing of secondary aerosol constituents during the advection of air masses towards the measurement site of Mt. Tai in northern China. Trajectories with and without chemical–cloud interaction are modeled. Modeled radical and non-radical concentrations demonstrate that the summit of Mt. Tai, with an altitude of ∼1.5 km a.m.s.l., is characterized by a suburban oxidants budget. The modeled maximum gas-phase concentrations of the OH radical are 3.2×106 and 3.5×106 molec. cm−3 in simulations with and without cloud passages in the air parcel, respectively. In contrast with previous studies at Mt. Tai, this study has modeled chemical formation processes of secondary aerosol constituents under day vs. night and cloud vs. non-cloud cases along the trajectories towards Mt. Tai in detail. The model studies show that sulfate is mainly produced in simulations where the air parcel is influenced by cloud chemistry. Under the simulated conditions, the aqueous reaction of HSO3- with H2O2 is the major contributor to sulfate formation, contributing 67 % and 60 % in the simulations with cloud and non-cloud passages, respectively. The modeled nitrate formation is higher at nighttime than during daytime. The major pathway is aqueous-phase N2O5 hydrolysis, with a contribution of 72 % when cloud passages are considered and 70 % when they are not. Secondary organic aerosol (SOA) compounds, e.g., glyoxylic, oxalic, pyruvic and malonic acid, are found to be mostly produced from the aqueous oxidations of hydrated glyoxal, hydrated glyoxylic acid, nitro-2-oxopropanoate and hydrated 3-oxopropanoic acid, respectively. Sensitivity studies reveal that gaseous volatile organic compound (VOC) emissions have a huge impact on the concentrations of modeled secondary aerosol compounds. Increasing the VOC emissions by a factor of 2 leads to linearly increased concentrations of the corresponding SOA compounds. Studies using the relative incremental reactivity (RIR) method have identified isoprene, 1,3-butadiene and toluene as the key precursors for glyoxylic and oxalic acid, but only isoprene is found to be a key precursor for pyruvic acid. Additionally, the model investigations demonstrate that an increased aerosol partitioning of glyoxal can play an important role in the aqueous-phase formation of glyoxylic and oxalic acid. Overall, the present study is the first that provides more detailed insights in the formation pathways of secondary aerosol constituents at Mt. Tai and clearly emphasizes the importance of aqueous-phase chemical processes on the production of multifunctional carboxylic acids.
Highlights
Secondary aerosols are more abundant than primary aerosols (Volkamer et al, 2006)
Secondary aerosols are usually divided into two classes: secondary inorganic aerosol (SIA) and secondary organic aerosol (SOA)
The present study focuses on the multiphase formation mechanism of key secondary aerosol constituents measured in June 2014 at Mt
Summary
Secondary aerosols are more abundant than primary aerosols (Volkamer et al, 2006). Their constituents are formed on a regional scale and transported over long distances and have a direct impact on the air quality of a wider area (Kim et al, 2007; Matsui et al, 2009; DeCarlo et al, 2010). Dicarboxylic acids and related compounds (oxocarboxylic acids and α-dicarbonyls) (DCRCs) are ubiquitous water-soluble components of SOA (Kawamura and Sakaguchi, 1999; Kawamura and Yasui, 2005; Pavuluri et al, 2010) They are mainly produced by secondary processes of precursors via gas-phase and subsequent aqueous-phase reactions (Glasius et al, 2000; Legrand et al, 2007; Kundu et al, 2010; Tilgner and Herrmann, 2010). The present study focuses on the multiphase formation mechanism of key secondary aerosol constituents measured in June 2014 at Mt. Tai, which is the highest mountain on the North China Plain (NCP). The detailed objectives of the present study are as follows: (i) characterization of modeled radical and non-radical oxidant concentrations; (ii) assessment of modeled concentrations and formation processes of key secondary inorganic compounds; (iii) study of modeled concentrations of DCRCs and a comparison with field observations to assess the model predictions; (iv) investigation of source and sink pathways of selected DCRCs; (v) examination of the impact of emission data on modeled secondary aerosol concentrations; (vi) identification of the key precursors of selected DCRCs; and (vii) the impact of higher glyoxal (Gly) partitioning constants on the modeled concentrations of Gly, glyoxylic acid (ωC2), and oxalic acid (C2)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have