Abstract

Oxidation of isoprene, a major biogenic volatile organic compound emitted from forest canopies, is a potential source of oxalic acid; the dominant species in organic aerosols. We evaluated here ozonolysis of isoprene in dry darkness as a source of oxalic (C2), malonic (C3) and succinic (C4) acids. We found that oxalic acid and methylglyoxal are dominant products within 10 min of reaction followed by glyoxylic, malonic or succinic acids. Interestingly, molecular distributions of oxidation products from early reactions (9–29 min) were characterized by the predominance of methylglyoxal followed by C2, which became dominant after 30 min. The isoprene-derived secondary organic aerosols (SOAs) showed chemical evolution with reaction time towards the molecular characteristics of dicarboxylic acids similar to those of ambient aerosols (C2>C3≥C4). The carbon-based relative abundances of methylglyoxal decreased steadily (40%→30%), while those of C2 increased with reaction time (15%→25%), but no such variations persisted for glyoxal (6–10%). This finding means that methylglyoxal is more important intermediate of oxalic acid than glyoxal. In contrast, smaller variability and lower concentrations of pyruvic and glyoxylic acids than other intermediates indicate that oxalic acid formation under dry conditions follows a different pathway than in aqueous-phase heterogeneous chemistry usually invoked for cloud/fog/atmospheric waters. Here, we propose new reaction schemes for high levels of methylglyoxal and oxalic acid via gas-phase chemical reactions with ozone and OH radicals to better interpret the ambient SOA composition. Furthermore, the relative abundances of C2 exhibit small variability from 1 to 8 h, suggesting its stable character towards the oxidation by hydroxyl radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call