Abstract

Peptides are crucial in biological processes and therapeutic applications. Given their importance, advancing our ability to predict peptide properties is essential. In this study, we introduce Multi-Peptide, an innovative approach that combines transformer-based language models with graph neural networks (GNNs) to predict peptide properties. We integrate PeptideBERT, a transformer model specifically designed for peptide property prediction, with a GNN encoder to capture both sequence-based and structural features. By employing a contrastive loss framework, Multi-Peptide aligns embeddings from both modalities into a shared latent space, thereby enhancing the transformer model's predictive accuracy. Evaluations on hemolysis and nonfouling data sets demonstrate Multi-Peptide's robustness, achieving state-of-the-art 88.057% accuracy in hemolysis prediction. This study highlights the potential of multimodal learning in bioinformatics, paving the way for accurate and reliable predictions in peptide-based research and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.