Abstract
Amphiphilicity is an important property for drug development and self-assembly. This paper introduces a general approach based on a simple fatty alcohol (dodecanol) membrane model that can be used to quantify the amphiphilicity of small molecules that are in good agreement with experimental surface tension data. By applying the model to a systematic series of compounds, it was possible to elucidate the effect of different motifs on amphiphilicity. The results further indicate that amphiphilicity correlates strongly with water-octanol partition coefficients (logP) for the 29 organic molecules examined in the 0 < logP < 4 range. Importantly, the simulation of the model membrane is an order of magnitude faster than a phospholipid membrane (e.g., 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) simulation and offers a simple atomistic approach for quantifying and predicting amphiphilicity of small drug-like molecules that could be used in quantitative structure-activity relationship studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.