Abstract

AbstractA protocol for multipartite quantum clock synchronization is performed under the influence of Unruh thermal noise. The dynamics of multipartite quantum system consisting of Unruh–DeWitt detectors when one of the detectors is accelerated are obtained. To estimate the time difference between the clocks, the time probability is calculated and how the probability is influenced by the Unruh thermal noise and other factors is analyzed. It is shown that both relativistic motion and interaction between the atom and the external scalar field affect the choice of optimal number of excited atoms in the initial state, which leads to a higher clock adjustment accuracy. Time probabilities for different types of initial states approach the same value in the limit of infinite acceleration, while tend to different minimums with increasing number of atoms. In addition, the accuracy of clock synchronization using a pair of entangled clocks in two‐party system is always higher than in a multipartite system, while the optimal Z‐type multipartite initial state always performs better than the W‐type state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call