Abstract

Non-conventional process like Photochemical Machining (PCM) is found to show a promise for machining very thin metal components. In the present study, the effect of various selected parameters such as time of etching, temperature of etchant and concentration of etchant on material removal rate, undercut in PCM of phosphor bronze has been investigated by using multi-objective grey relational analysis and their optimal conditions are evaluated. Full factorial (L27) orthogonal array (DoE) has been used to perform the experiments. GRG value indicates most significant parameters affecting the PCM process. The above factors are selected on the basis of effect - cause analysis and literature survey. Mathematical models relating to the machining performance and machining parameters have been formulated. Optimal settings for each performance measure have also been obtained. The results obtained after conference test prove that improvement in the quality will take place is if the setting of parameters are done at optimum level predicted by multi-objective grey relational analysis. The ANN model is prepared to predict the result by training neural which can be compared with actual experiments to confirm the satisfactory performance during the experimentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call