Abstract

ABSTRACTIn the present study, the investigation on photochemical machining (PCM) of stainless steel (SS-304) by ferric chloride as etchant is reported. SS-304 is machined by PCM process to obtain accurate dimensions and better geometrical features. Weighted grey relational analysis (WGRA) technique is used in optimization of PCM process parameters. DoE (L27) orthogonal array is applied to evaluate machining parameters, such as concentration of etchant, etching time, and temperature of etchant. The multiobjective optimization technique is used to optimize material removal rate (MRR), surface roughness (Ra), undercut (Uc) and etch factor (EF). Weighted grey relational grade is calculated to minimize Uc and surface roughness and to maximize MRR and EF. The quality characteristics MRR, EF, Uc, and Ra are reporting the improvement after the confirmatory test. The optimum machining parameters are processed to manufacture the microfluidic channel used in biomedical applications. The microfluidic channels and its assembly with Y-type for mixing of fluid with a size of 100 µm, 200 µm, and 300 µm are developed and investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.