Abstract
Airport slot allocation is a key short-term solution to address airport capacity constraints, and it has long been a focus of research in the field of air traffic management. The existing studies primarily consider constraints such as airport capacity and flight operations, optimizing the slot allocation of arrival and departure flights to maximize the utilization of airport resources. This study proposes an airline fairness index based on a demand-side value system and addresses the problem of flight slot allocation by developing a tri-objective model. The model simultaneously considers the maximum slot deviation, total slot deviation, and airline fairness. Additionally, dynamic capacity constraints using rolling time windows and constraints on slot migration during peak periods are incorporated. The ε-constraint method is employed in conjunction with a large-neighborhood search heuristic to solve a two-stage optimization process, yielding an efficient allocation scheme. The experimental results show that the introduction of rolling capacity constraints effectively resolves the issue of continuous overcapacity that arises when only a fixed capacity is considered. Additionally, the proposed airline fairness index, based on a demand-side value system, can significantly improve fairness during the slot allocation process. By sacrificing at most 16% of the total displacement, it is possible to reduce the unfairness index by nearly 80%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have