Abstract

Mild and effective pretreatments are essential to deconstruct lignocellulosic biomass so as to reuse cellulose content for value-added products. In this study, sequential multimode-ultrasound and microwave with natural ternary deep eutectic solvent (NATDES) pretreatments were used to deconstruct corn straw and optimized factors such as NATDES, ultrasonic, and microwave parameters. Results indicated that the ultrasound-NATDES or microwave-NATDES pretreatment could remove 37.86% and 52.36% lignin, respectively. When using sequential multimode-ultrasound and microwave assisted NATDES pretreatment, the delignification efficiency increased to 61.50%, and the cellulose content increased from 34.70% to 76.08%. In addition, the delignification of sequential multimode-ultrasound and microwave assisted NATDES pretreatment (under the mild conditions of microwave heating at 60 °C and 60 min) increased to 57.39%, and the cellulose content increased to 59.98%, too. This highlighted the effect of the combined ultrasound and microwave technology. Finally, the microstructural changes of mercury intrusion porosimeters, scanning electron microscopy, thermogravimetric, X-ray diffraction and Fourier transform mid-infrared spectroscopy were conducted to confirm the effectiveness of this method to deconstruct corn straw. A mechanism of the deconstruction of corn straw biomass in NATDES with the assistance of the sequential multimode-ultrasound and microwave heating was proposed. This research could open a window for future use of biomass energy by deconstructing lignocellulosic biomasses using environmentally friendly pretreatment methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.