Abstract
In this paper, we propose a multi-manifold deep metric learning (MMDML) method for image set classification, which aims to recognize an object of interest from a set of image instances captured from varying viewpoints or under varying illuminations. Motivated by the fact that manifold can be effectively used to model the nonlinearity of samples in each image set and deep learning has demonstrated superb capability to model the nonlinearity of samples, we propose a MMDML method to learn multiple sets of nonlinear transformations, one set for each object class, to nonlinearly map multiple sets of image instances into a shared feature subspace, under which the manifold margin of different class is maximized, so that both discriminative and class-specific information can be exploited, simultaneously. Our method achieves the state-of-the-art performance on five widely used datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.