Abstract

The Resistive Random Access Memory devices have emerged as an energy-efficient alternative to Von Neumann computers by enabling in-memory computing. Here we demonstrate bipolar resistive switching in thin films of Nickel oxide (NiO) and Zinc Ferrite (ZFO) using a simple Al/NiO/ZFO/ITO configuration, making them a possible candidate for the next generation memory devices. The fabricated device demonstrated excellent resistive switching behavior with high endurance for up to 1000 cycles, good retention for more than 104 s, and a good resistance ratio of HRS to LRS ∼102. Ohmic conduction was observed in the LRS, while in the HRS, along with ohmic conduction, space charge limited current (SCLC) and Schottky mechanisms were observed. Besides the LRS and HRS, a number of stable intermediate resistance states can also be obtained during the RESET process using different stop voltages, which makes the current device a multilevel resistive switching device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call