Abstract

We focus on a two-dimensional time-space diffusion equation with fractional derivatives in space. The use of Crank-Nicolson in time and finite differences in space leads to dense Toeplitz-like linear systems. Multigrid strategies that exploit such structure are particularly effective when the fractional orders are both close to 2. We seek to investigate how structure-based multigrid approaches can be efficiently extended to the case where only one of the two fractional orders is close to 2, i.e., when the fractional equation shows an intrinsic anisotropy. Precisely, we design a multigrid (block-banded–banded-block) preconditioner whose grid transfer operator is obtained with a semi-coarsening technique and that has relaxed Jacobi as smoother. The Jacobi relaxation parameter is estimated by using an automatic symbol-based procedure. A further improvement in the robustness of the proposed multigrid method is attained using the V-cycle with semi-coarsening as smoother inside an outer full-coarsening. Several numerical results confirm that the resulting multigrid preconditioner is computationally effective and outperforms current state of the art techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.