Abstract

Abstract As power densities and switching frequencies dramatically increase in wide bandgap power electronics, electromagnetic interference (EMI) increasingly impacts power conversion efficiency, and reliability, which requires mitigation for effective operation. Herein, we propose a nanocomposite encapsulant created by directly incorporating magnetic iron oxide nanoparticles into a silicone matrix for the purpose of EMI shielding. The addition of small amounts of particles to the silicone resulted in a 1.7 dBμV drop in EMI intensity; however, the addition of the iron oxide reduced the dielectric breakdown strength of the silicone matrix by 83% with respect to concentration. Further efforts to optimize the dielectric properties of the nanocomposites with respect to the nanoparticle loading are necessary to directly apply this technology; yet the results indicate that magnetic nanocomposites could be a potential avenue toward mitigating EMI in power devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.