Abstract

AbstractDeep level transient spectroscopy (DLTS), which assumes a single exponential decay form for the transient junction capacitance, is the most commonly used method to characterize deep impurity levels in semiconductors. However conventional DLTS may lead to erroneous results if there are several closely spaced energy levels or the emission rate has a continuous spectrum. To overcome this difficulty a novel method named the multi-exponential analysis of DLTS by CONTIN (MEDLTS by CONTIN) is proposed. This method analyzes the emission rate to have a finite continuous spectrum S(λ) which appears in the transient junction capacitance C(t)=, by using the program “CONTIN” developed by Provencher in biophysics. Even if S(λ) includes two peaks at λ1 and λ2, those peaks can be distinguished for λ2/ λ1>2. As an example of the application of this method, deep levels in Si:Au were experimentally investigated. According to the three dimensional S(λ)-T2/λ-1/T representation, the single peak in the conventional DLTS was clarified to consist of two adjacent levels with activation energies and capture cross sections EB1=0.51eV, σB1=4.0×10−15cm2 and EB2=0.47eV, σB2=1.1×10−15cm2. With the assumption of the finite continuous spectrum S(λ) for the emission rate, MEDLTS by CONTIN permits one to get much information correctly. MEDLTS by CONTIN is superior to the conventional DLTS because it is a single-temperature scan, multi-exponential analysis instead of the conventional multi-temperature scan, single-exponential analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.