Abstract
We are concerned with the existence of single- and multi-bump solutions of the equation $-\Delta u+(\lambda a(x)+a_0(x))u=|u|^{p-2}u$, $x\in{\mathbb R}^N$; here $p>2$, and $p0$ for $x\in{\mathbb R}^N$\$\bar{\Omega}$. Unlike most other papers on this problem we allow that $a_0\in L^\infty({\mathbb R}^N)$ changes sign. Using variational methods we prove the existence of multibump solutions $u_\lambda$ which localize, as $\lambda\to\infty$, near prescribed isolated open subsets $\Omega_1,\dots,\Omega_k\subset\Omega$. The operator $L_0:=-\Delta+a_0$ may have negative eigenvalues in $\Omega_j$, each bump of $u_\lambda$ may be sign-changing.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have