Abstract
Multiomics data integration is key for cancer prediction as it captures different aspects of molecular mechanisms. Nevertheless, the high-dimensionality of multi-omics data with a relatively small number of patients presents a challenge for the cancer prediction tasks. While feature selection techniques have been widely used to tackle the curse of dimensionality of multi-omics data, most existing methods have been applied to each type of omics data separately. In this paper, we propose a multi-agent architecture for feature selection, called MAgentOmics, to consider all omics data together. MAgentOmics extends the ant colony optimization algorithm to multi-omics data, which iteratively builds candidate solutions and evaluates them. Moreover, a new fitness function is introduced to assess the candidate feature subsets without using prediction target such as survival time of patients. Therefore, it can be considered as an unsupervised method. We evaluate the performance of MAgentOmics on the TCGA ovarian cancer multi-omics data from 176 patients using a 5-fold cross-validation. The results demonstrate that the integration power of MAgentOmics is relatively better than the state-of-the-art supervised multi-view method. The code is publicly available at https://github.com/SinaTabakhi/MAgentOmics. Clinical relevance- Discovering knowledge in existing multi-omics datasets through better feature selection enhances the clinical understanding of cancers and speeds-up decision-making in the clinic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.