Abstract
To address microgrid tie flow errors caused by wind generation variability, this paper proposes and develops a multi-time scale coordinated control and scheduling strategy for inverter-based thermostatically controlled loads (TCLs). First, in hour-time scale, inverter-based TCLs with adjusting temperature set-point are modeled as virtual generators to compensate tie flow deviations in the day-ahead plan. Next, in minute-time scale, virtual batteries representing operating behaviors of inverter -based TCLs with frequency control are scheduled determined by the control of virtual generators in hour-time scale. The virtual batteries are scheduled to smooth out tie flow errors corresponding to day-ahead plan and hour-time scale schedules. The multi-time scale control methods are coordinated to employ the response potential of inverter-based TCLs and response curve-based methods are proposed to control inverter-based TCLs considering the customer privacy. The multi-time scale stochastic schedules which are based on response curves of inverter-based TCLs are coordinated to accommodate wind generation variability. Simulation results demonstrate that the microgrid tie flow errors are effectively mitigated by the proposed multi-time scale coordinated control and scheduling of inverter-based TCLs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.