Abstract
Recently, unsupervised domain adaptation fault diagnosis (FD) techniques, which learn transferable features by reducing distribution inconsistency of source and target domians, have gained abundant attention and greatly promoted the reliability of rolling bearing (RB) under variable operating conditions. However, open-set domain adaptation issues which contain unknown faults in the test set have not been well addressed. This paper presents a new semi-supervised FD method for RB by combining wavelet transform and an improved domain adaptation network. First, a multi-source domain adaptation network is proposed to extract rich transfer features and achieve complementary information from multiple sources. Then, a pseudo-margin vector is employed to handle unseen faults in the target domain and realize the accurate fault diagnosis of RB. Finally, a new loss function is designed by adding weights to the traditional maximum mean difference to make the common label set more compatible and combining a dynamic optimization strategy to adaptively update the loss of each part. Finally, two experiments indicate our proposed approach has a higher diagnosis accuracy and can effectively tackle the diagnosis issue of unseen faults across different working conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.