Abstract
Data-driven intelligent fault diagnosis methods have been extensively researched and applied in rotating machinery. In practical application scenarios, factors such as variable operating conditions and scarcity of labeled samples in rotating machinery hinder the engineering application and promotion of diagnostic models. To address these challenges, this paper proposes an unsupervised domain adaptation network called the Multi-scale Hybrid Domain Adaptation with Attention (MHDAA). Firstly, a multi-scale convolutional module was developed to extract fault features at different scales. Secondly, a multi-channel attention mechanism was proposed to enable the convolution layers of different convolution kernels fully extract feature information. Finally, a hybrid domain adaptation was constructed to dynamically extract invariant features from both the source and target domains. The method was evaluated in multiple transfer scenarios of planetary gearboxes and bearings. Experimental results demonstrate that the proposed method can effectively utilize fault features with high correlation from multiple source domains to complete fault diagnosis with unknown data labels in the target domain. Moreover, the proposed method exhibits superior diagnostic performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.