Abstract

LiDAR (Light Detection and Ranging) imaging based on SPAD (Single-Photon Avalanche Diode) technology suffers from severe area penalty for large on-chip histogram peak detection circuits required by the high precision of measured depth values. In this work, a probabilistic estimation-based super-resolution neural network for SPAD imaging that firstly uses temporal multi-scale histograms as inputs is proposed. To reduce the area and cost of on-chip histogram computation, only part of the histogram hardware for calculating the reflected photons is implemented on a chip. On account of the distribution rule of returned photons, a probabilistic encoder as a part of the network is first proposed to solve the depth estimation problem of SPADs. By jointly using this neural network with a super-resolution network, 16× up-sampling depth estimation is realized using 32 × 32 multi-scale histogram outputs. Finally, the effectiveness of this neural network was verified in the laboratory with a 32 × 32 SPAD sensor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.