Abstract
To understand how memories are encoded in the hippocampus, we build memory decoding models to classify visual memories based on hippocampal activities in human. Model inputs are spatio-temporal patterns of spikes recorded in the hippocampal CA3 and CA1 regions of epilepsy patients performing a delayed match-to-sample (DMS) task. Model outputs are binary labels indicating categories and features of sample images. To solve the super high-dimensional estimation problem with short data length, we develop a multi-trial, sparse model estimation method utilizing B-spline basis functions with a large range of temporal resolutions and a regularized logistic classifier. Results show that this model can effectively avoid overfitting and provide significant amount of prediction to memory categories and features using very limited number of data points. Stable estimation of sparse classification function matrices for each label can be obtained with this multi-resolution, multi-trial procedure. These classification models can be used not only to predict memory contents, but also to design optimal spatio-temporal patterns for eliciting specific memories in the hippocampus, and thus have important implications to the development of hippocampal memory prostheses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.