Abstract
The presented methodology in this study is addressed to in-phase (IP) and out-of-phase (OOP) loading cycles in stationary and transient thermo-mechanical fields. The subject of the numerical and experimental study is a single edge notch tension (SENT) specimen produced from a high-temperature nickel-based alloy ХН73М. In order to determination a local thermo-mechanical stress-strain rate and displacement fields a new algorithm for the multi-physics numerical calculations developed and implemented incorporates Maxwell 3D, Fluent and Transient Structural modules of ANSYS 2021R1. The employment of proposed algorithm to represent the cyclic history associated with the TMF conditions in the experiments, multi-physics finite element (FE) modelling of the stress, strain and displacement fields in the SENT specimen was performed. Additionally, time dependent non-uniform temperature fields were determined with the same cyclic variations and magnitudes as in the experimental OOP and IP cycling. As a complement to the FEM computations, the infra-red thermography temperature distribution measurements was implemented for the TMF state in the experiments in the SENT specimen. The comparison multi-physics FE-analysis and direct measurements shown in the present study is intended to contribute to a better understanding of the different mechanisms driving TMF crack growth and the address the outstanding questions associated with basic methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.