Abstract

The polishing efficiency of the soft abrasive flow (SAF) method is low, which is not in line with the concept of carbon emission reduction in industrial production. To address the above issue, a two-phase fluid multi-physics modeling method for ultrasonic-assisted SAF processing is proposed. The acoustics-fluid coupling mechanic model based on the realizable k-ε model and Helmholtz equation is built to analyze the cavitation effect. The results show that the proposed modeling and solution method oriented to ultrasonic-assisted SAF processing have better revealed the flow field evolution mechanism. The turbulence kinetic energy at different ultrasonic frequencies and amplitudes is studied. Simulation results show that the ultrasonic vibration can induce a cavitation effect in the constrained flow channel and promote the turbulence intensity and uniformity of the abrasive flow. A set of comparative polishing experiments with or without ultrasonic vibration are conducted to explore the performance of the proposed method. It can be found that the ultrasonic-assisted SAF method can improve the machining efficiency and uniformity, to achieve the purpose of carbon emission reduction. The relevant result can offer a helpful reference for the SAF method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call