Abstract

To resolve the low-polishing efficiency problem caused by the turbulent layer separation in soft abrasive flow (SAF) processing, an ultrasonic-assisted SAF (UA-SAF) method is proposed based on the vibration effect. The coupled computational fluid dynamics (CFD)-discrete element method (DEM) modeling method (CFD-DEM) and the dynamic mesh are used to represent the UA-SAF flow and the periodic moving boundary caused by ultrasonic vibration, while the particle-wall erosion is calculated by the Archard model. Through tracking the abrasive particle motion in the simulation, the particle-wall collision states and the particle cutting effect are revealed, which mainly includes the particle plowing and the particle impact erosion. It has been found from the simulation that the fluid turbulent motion and the fluid dynamic pressure which are the power source for the particles to obtain the anisotropic cutting kinetic energy can be strengthened obviously by the ultrasonic vibrating, which results in the increase of the probability of particle impacting the target surface, and then the particle-wall wear rate and the wear area can be improved. A set of comparative experiments, including the rough and precision polishing procedures, are then conducted to evaluate the polishing performance by using the SAF and UA-SAF, respectively. The variations of the surface roughness and the workpiece mass are obtained, and the surface morphologies are observed. The experimental results prove that the ultrasonic vibration can effectively improve the abrasive flow polishing efficiency and precision without producing cavitation erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call