Abstract

In practice, simultaneous impact localization and time history reconstruction can hardly be achieved, due to the ill-posed and under-determined problems induced by the constrained and harsh measuring conditions. Although ℓ1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell_{1}$$\\end{document} regularization can be used to obtain sparse solutions, it tends to underestimate solution amplitudes as a biased estimator. To address this issue, a novel impact force identification method with ℓp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell_{p}$$\\end{document} regularization is proposed in this paper, using the alternating direction method of multipliers (ADMM). By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators, ADMM can address the challenge effectively. To mitigate the sensitivity to regularization parameters, an adaptive regularization parameter is derived based on the K-sparsity strategy. Then, an ADMM-based sparse regularization method is developed, which is capable of handling ℓp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell_{p}$$\\end{document} regularization with arbitrary p values using adaptively-updated parameters. The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure. Additionally, an investigation into the optimal p value for achieving high-accuracy solutions via ℓp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell_{p}$$\\end{document} regularization is conducted. It turns out that ℓ0.6\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell_{0.6}$$\\end{document} regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic ℓ1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ell_{1}$$\\end{document} regularization method. The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call