Abstract
Upgrading the capacity of existing transmission lines is essential for meeting the growing energy demands, facilitating the integration of renewable energy, and ensuring the security of the transmission system. This study focuses on the selection of lines whose capacities and by how much should be expanded from the perspective of the Independent System Operators (ISOs) to minimize the total system cost. We employ advanced multi-parametric programming and an enhanced branch-and-bound algorithm to address complex mixed-integer linear programming (MILP) problems, considering multi-period time constraints and physical limitations of generators and transmission lines. To characterize the various decisions in transmission expansion, we model the increased capacity of existing lines as parameters within a specified range. This study first relaxes the binary variables to continuous variables and applies the Lagrange method and Karush-Kuhn-Tucker (KKT) conditions to obtain optimal solutions and identify critical regions associated with active and inactive constraints. Moreover, we extend the traditional branch-and-bound (B&B) method by determining the problem’s upper and lower bounds at each node of the B&B decision tree, helping to manage computational challenges in large-scale MILP problems. We compare the difference between the upper and lower bounds to obtain an approximate optimal solution within the decision-makers’ tolerable error range. In addition, the first derivative of the objective function on the parameters of each line is used to inform the selection of lines for easing congestion and maximizing social welfare. Finally, the capacity upgrades are selected by weighing the reductions in system costs against the expense of upgrading line capacities. The findings are supported by numerical simulations and provide transmission-line planners with decision-making guidance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.