Abstract
Oscillatory activity rising from the interaction among neurons is widely observed in the brain at different scales and is thought to encode distinctive properties of the neural processing. Classical investigations of neuroelectrical activity and connectivity usually focus on specific frequency bands, considered as separate aspects of brain functioning. However, this might not paint the whole picture, preventing to see the brain activity as a whole, as the result of an integrated process. This study aims to provide a new framework for the analysis of the functional interaction between brain regions across frequencies and different subjects. We ground our work on the latest advances in graph theory, exploiting multi-layer community detection. In our multi-layer network model, layers keep track of single frequencies, including all the information in a unique graph. Community detection is then applied by means of a multilayer formulation of modularity. As a proof-of-concept of our approach, we provide here an application to multi-frequency functional brain networks derived from resting state EEG collected in a group of healthy subjects. Our results indicate that α-band selectively characterizes an inter-individual common organization of EEG brain networks during open eyes resting state. Future applications of this new approach may include the extraction of subject-specific features able to capture selected properties of the brain processes, related to physiological or pathological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.