Abstract
Automated segmentation is a challenging task in medical image analysis that usually requires a large amount of manually labeled data. However, most current supervised learning based algorithms suffer from insufficient manual annotations, posing a significant difficulty for accurate and robust segmentation. In addition, most current semi-supervised methods lack explicit representations of geometric structure and semantic information, restricting segmentation accuracy. In this work, we propose a hybrid framework to learn polygon vertices, region masks, and their boundaries in a weakly/semi-supervised manner that significantly advances geometric and semantic representations. Firstly, we propose multi-granularity learning of explicit geometric structure constraints via polygon vertices (PolyV) and pixel-wise region (PixelR) segmentation masks in a semi-supervised manner. Secondly, we propose eliminating boundary ambiguity by using an explicit contrastive objective to learn a discriminative feature space of boundary contours at the pixel level with limited annotations. Thirdly, we exploit the task-specific clinical domain knowledge to differentiate the clinical function assessment end-to-end. The ground truth of clinical function assessment, on the other hand, can serve as auxiliary weak supervision for PolyV and PixelR learning. We evaluate the proposed framework on two tasks, including optic disc (OD) and cup (OC) segmentation along with vertical cup-to-disc ratio (vCDR) estimation in fundus images; left ventricle (LV) segmentation at end-diastolic and end-systolic frames along with ejection fraction (LVEF) estimation in two-dimensional echocardiography images. Experiments on nine large-scale datasets of the two tasks under different label settings demonstrate our model’s superior performance on segmentation and clinical function assessment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have