Abstract
Automatic and accurate segmentation of optic disc (OD) and optic cup (OC) in fundus images is a fundamental task in computer-aided ocular pathologies diagnosis. The complex structures, such as blood vessels and macular region, and the existence of lesions in fundus images bring great challenges to the segmentation task. Recently, the convolutional neural network-based methods have exhibited its potential in fundus image analysis. In this paper, we propose a cascaded two-stage network architecture for robust and accurate OD and OC segmentation in fundus images. In the first stage, the U-Net like framework with an improved attention mechanism and focal loss is proposed to detect accurate and reliable OD location from the full-scale resolution fundus images. Based on the outputs of the first stage, a refined segmentation network in the second stage that integrates multi-task framework and adversarial learning is further designed for OD and OC segmentation separately. The multi-task framework is conducted to predict the OD and OC masks by simultaneously estimating contours and distance maps as auxiliary tasks, which can guarantee the smoothness and shape of object in segmentation predictions. The adversarial learning technique is introduced to encourage the segmentation network to produce an output that is consistent with the true labels in space and shape distribution. We evaluate the performance of our method using two public retinal fundus image datasets (RIM-ONE-r3 and REFUGE). Extensive ablation studies and comparison experiments with existing methods demonstrate that our approach can produce competitive performance compared with state-of-the-art methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have