Abstract

The emphasis on increased turbofan fuel efficiency requires advanced turbofan designs that will integrate higher engine bypass ratios and shorter nacelles. The resulting acoustic signature of these designs will have a more broadband character as well as a smaller available area for liner installation. This two-fold impact compels a need for an improvement in the state of the art in liner technology. Increasing the acoustic absorption efficacy over a broader frequency range is a means to address this need. An acoustic liner development and optimization process was conceived and employed to achieve and demonstrate an improved broadband liner design concept. A series of increasing technology readiness level liner studies were conducted to enhance the optimization methodology while validating the concept. This progression spanned several NASA Aeronautics Research Mission Directorate programs/projects due to its relevance. This article reviews the development and evaluation process of the multi-degree-of-freedom liner technology concept from formation through simple experimental models to a flight test over an approximate 10-year period, focusing on the discrete tests comprising the development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call