Abstract

Rocket sled test avoids boundary effects in wind tunnel test and inconvenience of flight test, which is one of the feasible options for future single-stage-to-orbit. To analyze potential safety issues during payload separation and optimize the arrangement of testing sensors, different structural layouts and operating speeds of the rocket sled are conducted based on computational fluid dynamics and computational aeroacoustics. The hypersonic winged standard model is utilized as the load for these simulations. The analysis encompasses the evolution of shock waves, the forces exerted on the payload and noise propagation. Variations in flow field and aeroacoustic characteristics of rocket sled are analysed, revealing underlying physical mechanisms. It is observed that placing the payload in front of the thruster can reduce the head pressure, excessive wingspan may have an impact on the structural safety of the wingtip, and the regions of high sound pressure levels mainly exists in the middle and rear sections of the rocket sled. Moreover, as the Mach number increases, the characteristic frequency initially rises and then declines. These researches can serve as a valuable reference for the development of ground test systems and single-stage-to-orbit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.