Abstract
High spatial resolution of Magnetic Resonance images (MRI) provide rich structural details to facilitate accurate diagnosis and quantitative image analysis. However the long acquisition time of MRI leads to patient discomfort and possible motion artifacts in the reconstructed image. Single Image Super-Resolution (SISR) using Convolutional Neural networks (CNN) is an emerging trend in biomedical imaging especially Magnetic Resonance (MR) image analysis for image post processing. An efficient choice of SISR architecture is required to achieve better quality reconstruction. In addition, a robust choice of loss function together with the domain in which these loss functions operate play an important role in enhancing the fine structural details as well as removing the blurring effects to form a high resolution image. In this work, we propose a novel combined loss function consisting of an L1 Charbonnier loss function in the image domain and a wavelet domain loss function called the Isotropic Undecimated Wavelet loss (IUW loss) to train the existing Laplacian Pyramid Super-Resolution CNN. The proposed loss function was evaluated on three MRI datasets - privately collected Knee MRI dataset and the publicly available Kirby21 brain and iSeg infant brain datasets and on benchmark SISR datasets for natural images. Experimental analysis shows promising results with better recovery of structure and improvements in qualitative metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.