Abstract

In PNAS, Woda et al. (1) present the results of a multidimensional investigation of the impacts of several hydraulically fractured shale gas wells on an aquifer and a hydrologically connected stream in a particular area in central Pennsylvania. The stream, Sugar Run, has been impacted by migration of methane into it. Sugar Run has inflow of groundwater from aquifers overlying the Marcellus Shale, which is relatively close to the land surface in the study area (e.g., one shale gas well of primary focus in the study is reported to intersect the Marcellus Shale at a depth of 997 m). Stream samples and groundwater samples were collected upstream and downstream from a location in Sugar Run where intermittent bubbling and groundwater seepage have been observed for at least 4 y since intensive shale gas development began in the study area in 2008. Samples were analyzed for dissolved methane; Na, Ca, Mg, Fe, Mn, SO42−, Cl−, and other inorganic solutes; carbon and strontium isotopes; and noble gases. The authors also obtained and analyzed regional groundwater-quality data and water-quality data for Sugar Run before shale gas development. Analysis of the water-quality data with consideration of regional characteristics and surface and groundwater characteristics before shale gas development led Woda et al. (1) to conclude from multiple lines of evidence that Sugar Run and the aquifer(s) that provide inflow to the stream have been contaminated by “new methane” mobilized by the shale gas development. They propose a water-quality indicator of the presence of recent methane contamination, namely, high sulfate (>6 mg/L) and iron (>0.3 mg/L) in waters with high methane concentrations. The protocol developed by the authors for use of aqueous geochemical conditions to identify impacts associated with new methane will be useful in the Marcellus region and, perhaps, in … [↵][1]1Email: dzombak{at}cmu.edu. [1]: #xref-corresp-1-1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.