Abstract

We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.