Abstract
There are mainly two types of particle flows in the design of particle flow filters: The deterministic flows and the stochastic flows as diffusion processes. These two types of flows seem to share little commonality. In this paper, we revisit the design of particle flow filters and build a connection between these two types of particle flows: a deterministic flow can be obtained by modifying a stochastic flow, and vice versa. Particle flows are represented by differential equations which are often realized in practice by difference equations through discretization. The accuracy of such numerical approximations is impacted by the transient dynamics of particle flows. We examine the role of the diffusion matrix in changing the transient dynamics of stochastic particle flows. We propose methods for the design of the diffusion matrix to improve the transient dynamics of particle flows from three perspectives: condition number reduction, feedback control, and covariance reduction. Analytical forms of optimal diffusion matrices are obtained for reducing filtering errors. Numerical examples are included to illustrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.