Abstract

The WS2–Ag composite films were prepared by radio frequency co-sputtering method. The effects of alloying Ag content on composition, microstructure, mechanical properties and friction behaviors have been analyzed by X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and high resolution transmission electron microscope (HRTEM), scratch tester, nano-indentation tester and ball-on-disk tribo-tester. The Ag addition was in present of nanocrystalline phase in the boundary of the crystalline WS2 matrix and induced morphology change, but could not completely prevent the columnar platelets. The columnar platelet was composed of a great deal of nanocrystalline and a small amount of amorphous WS2 phase. There were no substantial variations in the hardness of the composite films when the Ag content was in the range of 0–20.3at.%. The suitable amount of Ag content was benefited for improving the film adhesive strength and wear resistance both in vacuum and humid air environment. Particularly, the composite film with 9.0at.% Ag exhibited the longest wear life (about 7.6×105cycles in vacuum, 6.7×105cycles in humid air) under high Hertzian contact pressure (as high as 1.0GPa). The wear mechanism was discussed in terms of the rearrangement of wear track and formation of transfer film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.