Abstract
We presented here three carbon-nanomaterials-based modified glassy carbon electrodes (GCE) with Ni–Ag nanohybrid nanoparticles (NPs) deposited upon, including single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and the mesoporous carbons (MPCs), and compared their morphology effects on both Ni–Ag deposition quality and electrocatalytic performances toward Glu oxidation. After being deposited with Ni–Ag NPs, a homogenous surface with very small Ni–Ag NPs was obtained for Ni–Ag/SWCNTs/GCE, while heterogeneous, coarse surfaces with obvious embedment with large Ni–Ag particles were observed for both Ni–Ag/MWCNTs/GCE and Ni–Ag/MPC/GCE. All three modified electrodes were well characterized in terms of surface morphology, electron transfer rate, hydrophilicity, interference resistance, stability, electrocatalytic behaviors as well as practicability in real samples, based on which Ni–Ag/SWCNTs/GCE was always proved to be more advantageous over other two composite electrodes. Such advantage of Ni–Ag/SWCNTs/GCE was attributed to its desirable surface morphology good for Ni–Ag deposition and exposure of as many active sites as possible to Glu oxidation, leading to the extraordinary electrocatalytic performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have