Abstract

The intestinal compartment ensures nutrient absorption and barrier function against pathogens. Despite decades of research on the complexity of the gut, the adaptive potential to physical cues, such as those derived from interaction with particles of different shapes, remains less understood. Taking advantage of the technological versatility of silica nanoparticles, spherical, rod-shaped, and virus-like materials were synthesized. Morphology-dependent interactions were studied on differentiated Caco-2/HT29-MTX-E12 cells. Contributions of shape, aspect ratio, surface roughness, and size were evaluated considering the influence of the mucus layer and intracellular uptake pathways. Small particle size and surface roughness favored the highest penetration through the mucus but limited interaction with the cell monolayer and efficient internalization. Particles of a larger aspect ratio (rod-shaped) seemed to privilege paracellular permeation and increased cell-cell distances, albeit without hampering barrier integrity. Inhibition of clathrin-mediated endocytosis and chemical modulation of cell junctions effectively tuned these responses, confirming morphology-specific interactions elicited by bioinspired silica nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call