Abstract
Lightweight porous ceramics with a unique combination of superior mechanical strength and damage tolerance are in significant demand in many fields such as energy absorption, aerospace vehicles, and chemical engineering; however, it is difficult to meet these mechanical requirements with conventional porous ceramics. Here, we report a graded structure design strategy to fabricate porous ceramic nanowire networks that simultaneously possess excellent mechanical strength and energy absorption capacity. Our optimized graded nanowire networks show a compressive strength of up to 35.6 MPa at a low density of 540 mg·cm-3, giving rise to a high specific compressive strength of 65.7 kN·m·kg-1 and a high energy absorption capacity of 17.1 kJ·kg-1, owing to a homogeneous distribution of stress upon loading. These values are top performance compared to other porous ceramics, giving our materials significant potential in various engineering fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.