Abstract
We present a new numerical model to simulate settling trajectories of discretized individual or a mixture of particles of different geometrical shapes in a quiescent fluid and their flow trajectories in a flowing fluid. Simulations unveiled diverse particle settling trajectories as a function of their geometrical shape and density. The effects of the surface concavity of a boomerang particle and aspect ratio of a rectangular particle on the periodicity and amplitude of oscillations in their settling trajectories were numerically captured. Use of surrogate circular particles for settling or flowing of a mixture of non-circular particles were shown to miscalculate particle velocities by a factor of 0.9–2.2 and inaccurately determine the particles’ trajectories. In a microfluidic chamber with particles of different shapes and sizes, simulations showed that steady vortices do not necessarily always control particle entrapments, nor do larger particles get selectively and consistently entrapped in steady vortices. Strikingly, a change in the shape of large particles from circular to elliptical resulted in stronger entrapments of smaller circular particles, but enhanced outflows of larger particles, which could be an alternative microfluidics-based method for sorting and separation of particles of different sizes and shapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.