Abstract

Horseradish peroxidase (HRP) was injected into cells from which intracellular recordings were made in slices of the dorsal cochlear nucleus (DCN) in order to correlate physiology with morphology. In general, the morphology of cells labeled intracellularly with HRP corresponded to those made with Golgi impregnations in mice and other mammals. The following cells were labeled: one granule cell, four cartwheel cells, eight fusiform cells, two other cells in the fusiform cell layer, and two tuberculoventral association cells in the deep layers of the DCN. The axon of the granule cell runs parallel to isofrequency laminae with collaterals branching perpendicularly and running along the tonotopic axis. The cartwheel cells have dendrites in the molecular layer that are densely covered with spines. The axon of one cell terminates just dorsally to the cell body. Fusiform cells have the characteristic spiny, apical and smooth, basal dendrites. The basal dendrites are conspicuously oriented parallel to isofrequency laminae. Axons of the fusiform cells exit through the dorsal acoustic stria without branching. The two tuberculoventral association cells in the deep DCN have axons that terminate both in the deep DCN, within the same isofrequency lamina that contains the cell body, and in the ventral cochlear nucleus (VCN). Intracellular recordings from 11 of these cells show that they cannot be distinguished on the basis of their responses to intracellularly injected current. All cell types fired large action potentials that were followed by a fast and a slower undershoot, distinguishing them from cells of the VCN but not from one another. Most cells responded to shocks of the auditory nerve root with early EPSPs and later IPSPs. The latencies of EPSPs show that some were monosynaptic and others polysynaptic. That there was no systematic relationship between the latencies of EPSPs and the cell types from which they were recorded shows that shocks to the nerve root may have activated more than just the large, myelinated, auditory nerve fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call