Abstract

We report the effects of annealing on the morphology and crystallization kinetics for the high-κ gate dielectric replacement candidate hafnium oxide (HfO2). HfO2 films were grown by atomic layer deposition (ALD) on thermal and chemical SiO2 underlayers. High-sensitivity x-ray diffractometry shows that the as-deposited ALD HfO2 films on thermal oxide are polycrystalline, containing both monoclinic and either tetragonal or orthorhombic phases with an average grain size of ∼8.0 nm. Transmission electron microscopy shows a columnar grain structure. The monoclinic phase predominates as the annealing temperature and time increase, with the grain size reaching ∼11.0 nm after annealing at 900 °C for 24 h. The crystallized fraction of the film has a strong dependence on annealing temperature but not annealing time, indicating thermally activated grain growth. As-deposited ALD HfO2 films on chemical oxide underlayers are amorphous, but show strong signatures of ordering at a subnanometer level in Z-contrast scanning transmission electron microscopy and fluctuation electron microscopy. These films show the same crystallization kinetics as the films on thermal oxide upon annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.