Abstract

In this study, we developed a drug delivery system (DDS) using polymeric nanocarriers for the treatment of biofilm infection disease. Clarithromycin (CAM)-encapsulated and chitosan (CS) modified polymeric nanoparticles (NPs) were prepared using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) (Sol) and poly-(DL-lactide-co-glycolide), respectively. To understand the availability of the prepared NPs, we made morphological observations of the antibacterial activity derived from the NPs toward the bacterial cells within the biofilm using scanning electron microscopy and transmission electron microscopy measurements. These results revealed different antibacterial activities for the two types of drug carriers. In the case of CAM-encapsulated+CS-modified Sol micelles treatment, NPs can exert their antibacterial activity not only by the surfactant, CAM and CS effects but also by intrusion into the bacterial cells. Thereby, CAM-encapsulated+CS-modified Sol micelles had a higher antibacterial activity. The morphological information is useful to design suitable NPs for the treatment against biofilm infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call