Abstract

The aim of this study was to prepare and characterize solid dispersion particles with a novel amphiphilic polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, as a water-soluble carrier. Solid dispersion particles were prepared by hot-melt extrusion and spray drying. Indomethacin (IMC) was used as a model comprising drugs with low solubility in water and d-mannitol (MAN) was used as an excipient. The physicochemical properties of prepared particles were characterized by scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, FTIR spectra analysis, and drug release studies. Stability studies were also conducted under stress conditions at 40°C, 75% relative humidity. We found that dissolution behavior of the original drug crystal could be improved by solid dispersion with the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer. The PXRD pattern and thermal analysis indicated that the solid dispersion prepared with the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and IMC was in an amorphous state. FTIR spectra analysis indicated that the interaction manner between the polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and IMC may differ with the preparation method and formulation of solid dispersions. Stability studies proved that the amorphous state of IMC in solid dispersion particles was preserved under stress conditions for more than two weeks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.