Abstract

Electrospinning is an effective method in preparing polymeric nanofibrous drug delivery systems (DDSs) for topical wound healing and skin burn therapy applications. The aim of the present study was to investigate a new synthetic graft copolymer (Soluplus) as a hydrophilic carrier polymer in electrospinning of nanofibrous DDSs. Soluplus (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PCL-PVAc-PEG)) was applied in the nonwoven nanomats loaded with piroxicam (PRX) as a poorly water-soluble drug. Raman spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy (SEM) were used in the physical characterization of nanofibrous DDSs. According to the SEM results, the drug-loaded PCL-PVAc-PEG nanofibers were circular in cross-section with an average diameter ranging from 500 nm up to 2 µm. Electrospinning stabilized the amorphous state of PRX. In addition, consistent and sustained-release profile was achieved with the present nanofibrous DDSs at the physiologically relevant temperature and pH applicable in wound healing therapy. In conclusion, electrospinning can be used to prepare nanofibrous DDSs of PCL-PVAc-PEG graft copolymer (Soluplus) and to stabilize the amorphous state of a poorly water-soluble PRX. The use of this synthetic graft copolymer can open new options to formulate nanofibrous DDSs for wound healing.

Highlights

  • Modern polymeric drug delivery systems (DDSs) for wound therapy are systems which are designed to release drug(s) to wound sites in a consistent and sustained fashion [1, 2]

  • Electrospinning is an effective method in preparing polymeric nanofibrous drug delivery systems (DDSs) for topical wound healing and skin burn therapy applications

  • Consistent and sustained-release profile was achieved with the present nanofibrous DDSs at the physiologically relevant temperature and pH applicable in wound healing therapy

Read more

Summary

Introduction

Modern polymeric drug delivery systems (DDSs) for wound therapy are systems which are designed to release drug(s) to wound sites in a consistent and sustained fashion [1, 2]. The working principle of electrospinning is relatively simple: a polymer solution is ejected from a capillary toward a grounded metal collector plate by applying high voltage between the capillary and the plate [13]. Established polymers, such as cellulose derivatives, polyvinylpyrrolidone, polyvinyl alcohol, poly-L-lactic acid, poly(ε-caprolactone), and chitosan, have been applied as carriers in the electrospinning of nanomats for drug delivery applications. The selection of a carrier polymer for electrospinning is crucial since the type of polymer and drug-polymer-solvent interactions influence the formation, morphology, mechanical properties, drug release (including burst effect), and biocompatibility of the final nanofibrous DDSs [10, 12, 14,15,16,17,18]. Among current nanofabrication methods, electrospinning is considered the process with potential for industrial-scale mass production [19]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call